“数据中台”这个新词最近几年炒得火热,各种解释铺天盖地,在这里无需赘述。但是,不管哪种解释,你会发现他们都强调一个观点:数据中台并不是指具体某一个产品,而是一套“机制”,解决的是“企业如何用好数据”的问题。

对于有一定信息化基础和数据沉淀的企业来说,内部可能已经建设好各种分析系统。只不过这些系统是分批建设的,存在明显的“烟囱式”架构。系统之间相互独立,数据也无法打通。这种情况下通过建设数据仓库或者大数据平台进行统一的数据采集、处理和存储,然后把数据或者数据服务的能力统一提供给上层的应用使用。这种方式的确可以解决“烟囱式”的问题,也是企业普遍的做法。

既然如此,还要数据中台做什么呢?

问题就在于不管是数据仓库,还是大数据平台,都是由IT团队主导建设的,业务部门并不参与其中。数据的分析能力也是IT人员按照自己的想法进行建设,作为一线的业务人员只能被动地接受,有什么需求提出来就是了。久而久之,业务人员已经形成习惯,不会去要求提升自己的数据分析能力。而且,业务人员只能在IT设定好的框架下做“有限”的分析,是典型的“项目型”BI应用方式。

本来这也没什么大问题,反正这么多年大家都是这么过来的,虽然它的弊端众所周知:效率太低了!而且相似需求不断重复,数据利用率也不够。

更为关键的是,它违背了“数据辅助决策”这个基本原则。我们分析数据,本来就是为了更好地支持业务决策。由IT主导的数据建设,无法很好地达到这一目标,因为没有人比业务人员更清楚自己需要什么数据,用什么口径,要如何统计。所以,好的办法就是业务人员根据自己的需求去分析数据,让数据真正为业务所用,就才是“数据中台”真正的含义。

要如何才能真正做到这一点呢?在这里,先给大家举一个例子。

OA已经是企业中很普遍的一款应用,大家都有了使用的习惯,OA也确实给我们的工作带来了极大的便利,其价值显而易见。但OA为什么能够这么普及呢?一个重要原因是它足够易用!只要你简单操作一下,以后就可以自主使用,根本不需要IT的支持,除非有一些定制化的需求。

那么,BI能不能也像OA一样做到如此普及、易用呢?

这就是我们追求的目标。

要实现这个目标,绝不是靠一个BI工具就能解决的,而必须是一整套的解决方案,必须从数据目录、分析工具、应用商店、运营保障这几个方面入手。

 ●数据目录●

前面已经说过,大部分企业已经有了数据仓库或者大数据平台,存储在里面的数据只有IT人员知道怎么使用。要想业务人员能够自助分析,首先需要提供数据目录让他知道怎么用这些数据,需要把数据变得易懂易用。通过对表、字段名称进行业务含义翻译,把枯燥的数据翻译成容易理解的业务数据,并且把字段的数据类型、显示格式、维度层次等提前设置好,业务人员用起来就方便多了。通过这种方式,还可以把企业的数据资产化,提升数据价值。

有了数据目录,还需要以可视化的形式展示出来,并且提供精准的搜索功能,让业务人员可以快速地找到。在自助分析过程中遇到问题,需要有专门的渠道随时获取支持。只有解决了这三个问题,业务人员才有可能进行下一步的自助分析。

11.webp.jpg

●分析工具●

企业采购的自助分析工具大多只提供“可视化”的功能,缺乏深度、灵活的数据分析能力。即使有一些国外的工具可以提供,也因为使用过于复杂,学习门槛太高而被放弃,业务人员还是喜欢用熟悉的Excel进行本地数据分析,这也是什么自助分析一直无法真正落地的一个重要原因。

既然如此,我们就需要提供多样化的分析工具供用户选择。例如即席查询,主要用于大数据量的清单明细查询,任何字段均可作为筛选条件;提供类似Excel透视表的透视分析,支持超大数据量的查询性能,支持超多维度、甚至维度无法固定的分析场景;还可以提供自助仪表盘,让业务人员通过拖拉拽就可以生成可视化的数据仪表盘,做到所见即所得。

业务人员习惯用Excel,那就提供BI和Excel结合的Excel分析。Excel的分析能力很强大,数据处理也很灵活,但在安全、性能、共享方面有很多不足,我们可以通过BI的功能进行弥补。这样即利用了Excel的优点,又解决了它的问题,真正做到赋能企业一线业务人员,让人人都是数据分析师。

其它的分析工具还有很多,企业可以根据实际需要提供给业务人员使用。但有一点要记住:一定要真正可落地的,真正能用起来的,否则只能是摆设。

22.webp.jpg

●应用商店●

一个企业要想让业务人员真正把数据用起来,更为重要的是要有一套机制,可以充分调动业务人员的积极性,营造全员数据分析的氛围。通过提供应用商店,我们可以实现这个目标。

应用商店使优秀的分析成果得到传播,用户能很方便的看到哪些是最热门、最优秀的分析,也能通过搜索,找到想要的分析。用户之间可以进行社交互动,对分析、应用、问题等进行点赞、评论。

这些分析成果可以沉淀下来,形成企业的知识资产,避免以后重复性的开发。通过社区分享经验,新手进行自助分析也无需从零开始。

我们还可以分析用户的行为数据,这些数据将帮助制定与推广运营策略,进一步提升应用商店的活跃度。

33.webp.jpg

●运营保障●

自助分析想要进一步推广普及,还需要提供安全、稳定、性能等方面的运营保障。数据安全至关重要,任何提供分析的数据都必须是可控的,可以针对不同的用户和角色控制不同的访问权限,而且可以精细到字段级和行级。同时,还需要提供灵活的数据脱敏,防止敏感的信息泄露。

如果访问量巨大,支持通过集群扩展来分散压力,保证系统的稳定。当处理的数据量达到一定规模发生卡顿时,通过缓存加速等技术手段也可以提高系统的性能。

44.webp.jpg

以上四个方面的措施解决“企业如何用好数据”的问题,也是Smartbi为普及BI应用所推出的“企业自助分析解决方案”,同时也是“数据中台”的理念。其实,对于企业特别是业务人员来说,他们并不关心什么是数据仓库、大数据平台或者数据中台,他们关心的是如何真正把数据用起来,让数据真正做到辅助一线业务决策,从而提高企业的市场竞争力。如果我们可以提供一套解决方案,让BI像OA一样在企业中普及、易用,那么离这个目标也不远了,你们说是吗?

关注中国IDC圈官方微信:idc-quan 我们将定期推送IDC产业最新资讯

查看心情排行你看到此篇文章的感受是:


  • 支持

  • 高兴

  • 震惊

  • 愤怒

  • 无聊

  • 无奈

  • 谎言

  • 枪稿

  • 不解

  • 标题党
2023-04-17 17:07:00
市场情报 首届中国软件创新发展大会,格创东智倡导联合创新
4月15日,首届中国软件创新发展大会在武汉成功举办。 <详情>
2021-01-21 10:29:02
云资讯 云徙科技邓通:数字中台是汽车营销数字化优解
为了提升用户体验,车企数字化的终点在于利用数字中台增进其经营管理与信息技术能力 <详情>
2020-05-28 18:50:17
市场情报 传承·超越 | Smartbi V9.5线上发布会圆满落幕
5月21日,思迈特软件“传承·超越”V9.5线上发布会以别出心裁的无实景科技感形式拉开帷幕。 <详情>
2019-12-23 16:18:00
大数据资讯 新华三荣登“2019年中国新增长创新实践”榜单 自身数字化转型成果赢得赞誉
进入2019年,新华三集团以大数据、人工智能及移动为核心打造数字中台,循序渐进,敏捷交付,解决业务痛点,赋能业务创新,实现企业数字化变革。 <详情>
2019-07-15 11:46:39
市场情报 云徙数字中台为何能够“重塑“数字营销?
营销的思维千变万化,从传统的以人为核心输出产品价值的所在,到以数据为中心连接客户的触点,能够看到营销价值的变化,不仅仅是模式的转变,还有时代所造就的科技。 <详情>